Vpu Exploits the Cross-Talk between BST2 and the ILT7 Receptor to Suppress Anti-HIV-1 Responses by Plasmacytoid Dendritic Cells
نویسندگان
چکیده
Plasmacytoid dendritic cells (pDCs) constitute a major source of type-I interferon (IFN-I) production during acute HIV infection. Their activation results primarily from TLR7-mediated sensing of HIV-infected cells. However, the interactions between HIV-infected T cells and pDCs that modulate this sensing process remain poorly understood. BST2/Tetherin is a restriction factor that inhibits HIV release by cross-linking virions onto infected cell surface. BST2 was also shown to engage the ILT7 pDC-specific inhibitory receptor and repress TLR7/9-mediated IFN-I production by activated pDCs. Here, we show that Vpu, the HIV-1 antagonist of BST2, suppresses TLR7-mediated IFN-I production by pDC through a mechanism that relies on the interaction of BST2 on HIV-producing cells with ILT7. Even though Vpu downregulates surface BST2 as a mean to counteract the restriction on HIV-1 release, we also find that the viral protein re-locates remaining BST2 molecules outside viral assembly sites where they are free to bind and activate ILT7 upon cell-to-cell contact. This study shows that through a targeted regulation of surface BST2, Vpu promotes HIV-1 release and limits pDC antiviral responses upon sensing of infected cells. This mechanism of innate immune evasion is likely to be important for an efficient early viral dissemination during acute infection.
منابع مشابه
Ig-like transcript 7, but not bone marrow stromal cell antigen 2 (also known as HM1.24, tetherin, or CD317), modulates plasmacytoid dendritic cell function in primary human blood leukocytes.
The Ig-like transcript (ILT) 7 is a surface molecule selectively expressed by human plasmacytoid dendritic cells (pDCs). ILT7 cross-linking suppresses pDC activation and type I IFN (IFN-I) secretion following TLR7/9 engagement. The bone marrow stromal cell Ag 2 (BST2, aka HM1.24, tetherin, or CD317) is expressed by different cell types upon exposure to IFN-I and is a natural ligand for ILT7. In...
متن کاملRegulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction
Plasmacytoid dendritic cells (pDCs) produce copious type I interferon (IFN) upon sensing nucleic acids through Toll-like receptor (TLR) 7 and TLR9. Uncontrolled pDC activation and IFN production are implicated in lymphopenia and autoimmune diseases; therefore, a mechanism controlling pDC IFN production is essential. Human pDCs specifically express an orphan receptor, immunoglobulin-like transcr...
متن کاملPlasmacytoid dendritic cells in angiolymphoid hyperplasia with eosinophilia
Background: Angiolymphoid hyperplasia with eosinophilia (ALHE) is characterized by irregularly-shaped blood vessels with an inflammatory infiltrate. While absent from normal skin, plasmacytoid dendritic cells (pDCs) infiltrate the skin upon injury and during several infectious, inflammatory, and neoplastic entities. In addition to providing anti-viral resistance, pDCs link the innate and adapti...
متن کاملPlasmacytoid dendritic cell–specific receptor ILT7–FcɛRIγ inhibits Toll-like receptor–induced interferon production
Immunoglobulin-like transcripts are a family of inhibitory and stimulatory cell surface immune receptors. Transcripts for one member of this family, ILT7, are selectively expressed in human plasmacytoid dendritic cells (pDCs). We demonstrate here that ILT7 protein associates with the signal adapter protein Fc epsilonRI gamma to form a receptor complex. Using an anti-ILT7 monoclonal antibody, we...
متن کاملVpu and BST2: Still Not There Yet?
Extensive investigations have identified two cellular proteins in humans that potently inhibit HIV type 1 (HIV-1) replication and are widely accepted as "restriction factors." APOBEC3G was identified as a restriction factor that diminishes HIV-1 replication by inducing G-to-A hypermutation in the viral genome, while BST2 has been identified as another restriction factor that impairs the release...
متن کامل